
 

     

BLAIZE IGNITES EDGE-AI PERFORMANCE 
El Cano Processor Runs Yolo v3 at 50fps, Consumes Less Than 7W 
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Ten-year-old edge-AI startup Blaize is sampling 
board-level systems that integrate its El Cano inference 
processor. The chip integrates 16 of the company’s graph-
streaming processors (GSPs), delivering peak throughput 
of 16 trillion operations per second (TOPS). El Cano uses 
dual Cortex-A53 CPUs to run an operating system and 
application software, but the programmable GSPs handle 
all neural-network operations independently, as well as im-
age signal processing, sensor fusion, and other tasks. The 
first products target commercial and enterprise computer-
vision systems, such as retail analytics and antitheft 
systems. El Cano is also well suited to automotive and 
industrial applications, including camera/lidar sensor 
fusion and robotics. 

The new processor, named for the often over-
looked Spanish explorer who completed the first cir-
cumnavigation of the Earth after Magellan died at sea, 
improves hardware utilization by combining data, 
instruction, and task parallelism. It can dynamically 
manage multiple workloads according to their band-
width and compute requirements, in addition to sup-
porting conditional processing. The chip’s hardware 
scheduler runs multiple neural networks in parallel or 
sequentially, or it can stagger execution to optimize 
use of available resources. In one of Blaize’s demos, 
El Cano ran five independent Yolo v3 networks on 
five separate HD-video streams, delivering inference 
results on 416x416 subframes at 10fps. It can also run 
a single copy at 50fps. The startup plans to begin vol-
ume production next quarter. Samsung manufactures 
the chip in 14nm technology. 

Blaize began operations as ThinCI in 2010, but it 
remained in stealth mode until the 2017 Hot Chips 
conference, where it presented its 28nm test chip. 

Founders include CEO Dinakar Munagala, CTO Satyaki 
Koneru, and Chief Scientist Ke Yin, each of whom previ-
ously worked as a GPU architect at Intel. Koneru worked 
at Nvidia as well. The company initially positioned its GSP 
technology for mobile devices, but after attracting strategic 
investments from Tier One suppliers and OEMs, it shifted its 
focus to include automotive and industrial systems. Denso, 
Daimler, Magma, and the Mirai Creation Fund (Toyota) 
are among its investors, along with Samsung and several 
venture-capital funds. In November 2019, the startup’s most 

Figure 1. Sequential and streaming neural-network execution. On the 
left, a TensorFlow-based neural network executes as a series of kernel 
operations one node at a time. By contrast, Blaize’s graph-streaming 
technology allows multiple nodes to execute in parallel, consuming 
data as soon as it’s produced and thereby increasing throughput as 
well as reducing on-chip memory requirements. 
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recent $65 million funding round brought the total invest-
ment to $87 million. Blaize is headquartered near Sacra-
mento, California, but most of its 325 employees work in 
Hyderabad, India.  

A Master of Multitasking  
Most deep-learning accelerators (DLAs) employ some form 
of data-flow architecture to handle large matrix operations, 
such as the systolic multiply-accumulate (MAC) arrays 
Google popularized in its tensor processing units (see MPR 
8/31/20, “Google Details TPUv3 Architecture”). Although 
that technique saves execution time and power by allowing 
intermediate results to flow directly from one stage to the 
next, the size of the data structures is often a poor match for 
fixed-function hardware. Vendors typically specify theoreti-
cal peak performance, but most inference engines run at less 
than 50% of that number on real-world tasks. 

Standard neural-network frameworks such as Tensor-
Flow exacerbate the problem because the graphs they pro-
duce employ an entire tensor as the smallest unit of data 
flow from one kernel operation (such as matrix multiply) to 
the next. Most neural-network engines only schedule one 
node and its associated operations at a time, leaving exe-
cution units unused. Figure 1 shows an example for three 
neural-network layers. For the execution sequence on the 

left, TensorFlow specifies the kernels for Nodes A, B, and C. 
Because only one kernel runs at a time, Node C must wait 
until Node B has completed its operations, even if Node A 
has already stored results in Buffer 2. 

To avoid these delays, DLA vendors must create paral-
lelizing compilers that rearrange the TensorFlow graph to 
execute efficiently on their hardware. Blaize’s Picasso soft-
ware tools analyze a neural-network graph to extract any 
data dependencies, fracturing each node into smaller block 
operations. El Cano’s hardware scheduler then dynamically 
distributes the operations to multiple execution units. The 
company extended OpenVX to take advantage of its task-
graph descriptors, adding OpenCL extensions that allow 
developers to program the chip using C/C++.  

El Cano implements fine-grain task-level parallelism 
based on a producer-consumer model. Rather than wait for 
the entire matrix multiplication at Node A to finish, for 
example, it executes smaller block operations that enable 
Nodes B and C to commence execution as soon as data is 
available. The GSPs allow instruction-level parallelism, in-
creasing throughput and reducing power compared with 
conventional data-flow architectures. The technique also 
saves die area by reducing on-chip-memory requirements. 
Because execution units consume data as soon as it’s availa-
ble, less temporary storage is necessary. 

Other accelerators based on GPUs and VLIW architec-
tures employ instruction and thread parallelism, but the 
GSP technique is different. In a VLIW design, the compiler-
determined thread assignments are static, and they ignore 
other threads running in parallel. El Cano’s thread-
scheduling process is dynamic. By scheduling operations 
on the basis of graph dependencies, the GSPs can look 
ahead to prefetch data and change context in a single clock 
cycle. They also support conditional execution, such as 
retargeting a camera or lidar sensor to acquire a more ac-
curate image of detected objects. This approach is similar 
to that of AI-specific manycore architectures from compa-

nies such as Graphcore and Tenstorrent. 

Inference Plus Sensor Fusion 
Blaize offers El Cano in two form factors. The first is 
the Pathfinder P1600, a credit-card-size system-on-
module (SoM) that uses the Cortex-A53s for stand-
alone operation. The second, the Xplorer X1600–
series plug-in cards, instead work as coprocessors. 
The X1600E ships on an EDSFF (enterprise and data-
center SSD form factor) card designed to plug into 
1U servers. The X1600P is a half-height half-width 
PCIe card that can connect up to four El Cano chips. 
Including the processor, DRAM, and support com-
ponents, each single-chip El Cano product has a 7W 
typical power rating. The company backs the lineup 
with a comprehensive software suite comprising the 
Picasso SDK for C++ programmers, AI studio for de-
veloping applications in a GUI environment without 

Figure 2. Blaize Pathfinder system-on-module. The processor has 16 
of the company’s graph-streaming-processor (GSP) cores, which 
deliver 16 TOPS total. An integrated scheduler distributes the work-
load by fragmenting the computational graph into smaller subtasks, 
enabling fine-grain task and thread parallelism. 
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Blaize is sampling the El Cano processor and plans 
to start volume production in 4Q20. The Blaize Xplorer 
X1600E card sells for $299, the industrial-grade Path-
finder P1600 SoM for $399, and the Blaize Xplorer 
X1600P card for $999 (all in volume quantities). More 
information on these products is at www.blaize.com/ 
products. For product-demo videos, point your web 
browser to www.blaize.com/resource-center. 

https://www.linleygroup.com/mpr/article.php?id=12357
https://www.linleygroup.com/mpr/article.php?id=12357
http://www.blaize.com/products
http://www.blaize.com/products
https://www.blaize.com/resource-center/
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having to code, and a Netdeploy tool that enables developers 
to optimize their models through pruning and quantization. 

The El Cano processor integrates two Cortex-A53s 
running at up to 1.0GHz, each with 32KB L1 and 512KB 
L2 caches. As Figure 2 shows, the CPUs work with an Arm 
crypto accelerator to guarantee secure operation. The chip 
offers 2x32-bit LPDDR4 interfaces that support up to 
16GB/s of total bandwidth. 

The GSPs integrate unified data pipelines that sup-
port up to 64-bit integer operations along with nonstand-
ard 8-bit floating point; half, single, and double precision; 
and Google’s Bfloat16 format. The higher-precision floating-
point capabilities enable lidar and radar signal processing.  

Although the chip is well suited to object-recognition 
and scene analysis in camera-based systems, the Picasso 
software also compiles image-processing kernels such as 
color correction and noise reduction to run on the GSPs. 
By using the GSPs rather than a fixed-function ISP, El Cano 
gives customers greater flexibility to configure it for differ-
ent applications and to future proof their systems. Pro-
cessing raw data can increase accuracy, and programmabil-
ity allows image-processing-function changes at run time. 
El Cano’s graph framework can run custom layers, such 
as for sensor fusion or general-purpose compute tasks. 

The processor includes a video codec that can encode 
or decode a single 4K video stream at 30fps or handle mul-
tiple smaller streams at the same rate. The MIPI CSI inter-
face provides four receive channels and a single transmit 
channel. El Cano also integrates a MIPI DSI display inter-
face along with standard networking interfaces for GbE, 
PCIe, and USB3.0. The Arm cores run TrustZone, working 
with the crypto engine to support se-
cure boot from flash memory connected 
to the quad SPI. For automotive and in-
dustrial systems, the SoM adds a three-
lane CAN interface and a variety of serial 
interfaces.  

Streaming Through the Quads 
El Cano’s top-level controller dynam-
ically manages graph execution, as Fig-
ure 3 shows. It works with the thread 
scheduler to implement the parallel, 
sequential, and staggered workload-
management schemes, and it also han-
dles conditional execution. Blaize com-
pares its task scheduling to the scatter/ 
gather techniques that CNNs frequent-
ly use to access image data (see MPR 
10/12/15, “Cadence P5 Boosts Em-
bedded Vision”). As in the data path, 
the hardware controller and the thread 
scheduler can fracture (scatter) or ag-
gregate (gather) instruction threads to 
maximize performance. As a result, the 

processor can simultaneously execute instructions for mul-
tiple neural-network nodes, increasing hardware utilization 
and throughput. 

The DMA- and execution-command rings queue 
threads for distribution to the GSPs and multilevel cache 
system. The L2 caches comprise a total of 4MB. The so-
called read-only caches hold immutable data written from 
higher execution-graph levels—weight parameters, for ex-
ample. The data structures include dependency information, 
which enables the scheduler to manage the thread-execution 
sequence along with up- and downstream data flow. On 
each clock cycle, the thread scheduler can pick from 64 in-
struction threads to populate up to 24 independent pipe-
lines, including those for custom functions, flow control, 
memory operations, scalar and vector math, and state man-
agement. Threads can spawn other threads, but they always 
flow back to the scheduler to check dependencies.  

Each GSP runs multiple threads in parallel on four sets 
of quad processors. Every quad integrates four identical 
cores connected to an arbiter, and every core has an instruc-
tion scheduler, thread-state memory, and two execution 
units: a multiprocessing SIMD unit (MPU) and a scalar pro-
cessing unit (SPU). Although Blaize calls it a scalar unit, 
the SPU is actually a narrower (but unspecified) SIMD unit 
than the MPU. Each quad also includes one shared special-
function unit (not shown in the figure) that executes histo-
grams, median filters, and similar DSP operations. The El 
Cano architecture implements fine-grain task parallelism by 
enabling threads for multiple neural-network nodes to exe-
cute in parallel on multiple cores in a quad, multiple quads 
in a GSP, and multiple GSPs in the chip. 

Figure 3. Sequential and streaming neural-network execution. On the left, a 
TensorFlow-based neural network executes as a series of kernel operations one 
node at a time. By contrast, Blaize’s graph-streaming technology allows multiple 
nodes to execute in parallel, consuming data as soon as it’s produced and thereby 
increasing throughput as well as reducing on-chip memory requirements. 
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Block-Based Processing Increases Efficiency 
El Cano’s MPUs can perform operations on unaligned 2D 
data blocks in configurable register files, such as block 
move and matrix-multiplication reduction using smaller 
dot products. The physical registers hold 512 bits, which are 
dynamically configurable as a vector or a 2D array. All of the 
persistent data structures are block based. To execute a block 
operation, the MPUs will automatically iterate, accessing the 
register file across a variable number of rows and columns, 
as Figure 4 shows.  

The MPUs execute 2D operations, such as matrix mul-
tiplication. But unlike most DLAs, they omit systolic arrays 
of MAC units. Rather than allocate a fixed-size hardware 
unit for MAC operations, typically yielding poor utilization, 
the graph compiler fractures MAC-intensive convolutions 
into smaller dot-product operations that the scheduler dis-
tributes for parallel execution. In each cycle, one INT8 dot-
product instruction executes a 3x3 convolution, comprising 

nine multiplications, eight additions, and a register accu-
mulation. By virtue of this flexibility, El Cano can execute 
MAC operations without leaving any multipliers idle wait-
ing for data. 

Using its 16 MPUs, each GSP can perform 64 INT8 
dot-product instructions per cycle, producing 0.92 TOPS 
at the chip’s 800MHz clock speed. Blaize includes addi-
tional MAC operations from the SPUs to calculate the peak 
performance of 1 TOPS per GSP or 16 TOPS for the El 
Cano chip. This performance scales with the width of the 
data being processed, so the chip can achieve 32 TOPS on 
INT4 data or 2 TOPS on FP64 data. For any given width, 
the MPUs handle integer and floating-point data at the 
same rate. 

A New Contender in Automotive 
El Cano is well suited to computer vision in a wide range 
of edge devices, and the initial system products target com-
mercial and enterprise applications. Because Blaize’s lead 
strategic investors are from the automotive space, however, 
and because it has an automotive-grade product on its 
roadmap, we compare El Cano with other low-power ADAS 
processors.  

The processor’s flexibility and power efficiency are 
most similar to the Hailo-8 processor, which also targets 
ADASs and autonomous vehicles (see MPR 6/24/19, 
“Hailo Illuminates Low-Power AI Chip”). Both devices will 
compete with Mobileye’s EyeQ5, the most recent offering 
from the ADAS leader (see MPR 12/9/19, “Mobileye Ex-
pands Into Robotaxis”).  

As Table 1 shows, these three chips offer similar peak 
TOPS per watt, but in practice, their performance depends 
on the workload and hardware utilization. Blaize specifies 
the El Cano PCIe card and module at 7W; we estimate the 
chip on its own requires about 5–6W, similar to EyeQ5, of-

fering a peak power efficiency of 2.7 TOPS per watt. 
Actual efficiency will be less. For example, running 
Yolo v3 at 50fps is equivalent to 3.4 TOPS, but be-
cause El Cano’s GSPs also handle image processing 
and other tasks, we estimate the chip will supply 
around 1.0 TOPS per watt for that application. 

Mobileye has yet to publish any neural-
network benchmarks, so we’re unable to derive 
EyeQ5’s real-world power efficiency. Hailo con-
sumes 1.7W when running ResNet-50 at 672fps, 
which requires about 5.1 TOPS—about 20% of the 
chip’s compute resources. It calculates Hailo-8’s 
power efficiency for that workload to be about 2.8 
TOPS per watt. When running a more compute-
intensive task such as Yolo v3, its efficiency will 
probably be greater, although the company withheld 
measurements. Hailo-8 integrates a Cortex-M4 con-
troller, but because that CPU lacks the ability to run 
Linux, we estimate total system power consumption 
at peak performance will be about 9W.  

Figure 4. El Cano 2D register-file operations. To accelerate 
matrix-math operations, the GSP cores execute block opera-
tions, reading and writing arbitrarily aligned arrays. This ex-
ample multiplies a 4x7 and 7x4 matrix to form a 4x4 matrix. 

 
 

Blaize 
El Cano 

Hailo 
Hailo-8 

Mobileye 
EyeQ5 

Main CPU 2x Cortex-A53 1x Cortex-M4 
4x MIPS64  
Warrior* 

CPU Speed 1.0GHz Undisclosed Undisclosed 
On-Chip Memory 4MB L2 cache 32MB SRAM* 3MB L2 cache 

DRAM Interface 
2x 32-bit  

LPDDR4-2133 
None 

4x 32-bit  
LPDDR4-2133 

Camera Interface 4x MIPI 2x MIPI 16x MIPI CSI 
Image Processor 4K @ 60fps Undisclosed Undisclosed 

I/O Interfaces 
1x CAN, GbE,  

PCIe Gen3, USB3.0 
GbE, PCIe 

3x CAN,  
GbE, PCIe Gen4 

Max AI Perf 16 TOPS 26 TOPS 12 TOPS 
Power (typical) 6W* 9W* 5W 
Efficiency 2.7 TOPS/W 2.8 TOPS/W 2.4 TOPS/W 
IC Process 14nm 16nm* 7nm 
Production 4Q20 1Q20 4Q20 

Table 1. Comparison of ADAS processors. These chips employ three dif-
ferent architectures, but they provide similar power efficiency. El Cano is 
unique for its ability to run image-processing tasks as well as fuse camera 
and lidar data. (source: vendors, except *The Linley group estimate) 
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EyeQ5 integrates four dual-thread MIPS cores, de-
livering the highest CPU performance in this group. It also 
supports a full set of surround cameras, whereas Hailo-8 
supports stereo cameras. Using the chip’s GbE interface, 
Blaize has demonstrated El Cano running five Ethernet-
connected cameras. Mobileye’s product offers twice the 
DRAM bandwidth of El Cano, but the latter needs less for 
its graph-streaming model. Hailo-8 omits a DRAM inter-
face. It can handle an entire ResNet-50 model in on-chip 
SRAM, but Yolo v3 processing requires multiple processors.  

In the Pathfinder P1600 system, El Cano has fused 
cameras and lidar, computing an occupancy grid by project-
ing the range information from the point cloud on images 
from four HD cameras. EyeQ5 and Hailo-8 must derive 
depth maps using stereo images and structure from motion, 
likely increasing safety-critical response time compared with 
El Cano’s sensor-fusion approach. 

Patiently Gaining an Edge on Competitors 
In their eagerness to win a piece of the fast-growing market 
for edge-AI processors, many startups prematurely launch 
products without first developing a complete hardware and 
software package. By contrast, Blaize patiently spent almost 
10 years refining its graph-streaming technology. In 2017, 
it announced a 28nm test chip, which enabled it to opti-
mize the architecture, prototype its PCIe cards and mod-
ules, and complete the software tools that are critical to 
using its architecture. The test chip also provided the neces-
sary proof of concept to attract potential customers and 
funding for the 14nm version.  

Blaize’s Picasso software-development platform lets 
customers program the chip through standard C/C++ tools, 
and it handles common machine-learning frameworks such 
as Caffe, Pytorch, and TensorFlow. Developers can also 
employ the custom-kernel compiler to build proprietary 
neural-network models or run other functions on the GSPs. 
Customers can avoid programming altogether by employing 
the Blaize AI Studio, which works with the Netdeploy tool 
and a library of precompiled network models. Netdeploy 
includes pruning and quantization features that enable 
accuracy/performance tradeoffs. Picasso’s AI tool kit pro-
vides computer-vision and deep-learning libraries, as well 
as a linear-algebra library that supports the GSPs’ DSP 
functions.  

El Cano is an edge-AI processor that excels at multi-
tasking. It’s the first announced product that can simulta-
neously run multiple Yolo v3 models without needing a 
massive power supply and many gigabytes of DRAM. El 
Cano offers flexibility, performance, and power efficiency 
for a variety of edge-related markets. Its ability to fuse lidar 
and camera images makes it ideal for automotive, and its 
ability to do conditional processing enables more-precise 
object recognition than other inference processors can 
achieve. It’s a good fit for industrial, retail, smart-city, and 
computer-vision systems that analyze inputs from multiple 
cameras, but its modules are too expensive to put in each 
camera. By taking time to develop its first products, Blaize 
avoided burning through cash too quickly. We expect its 
patience will pay off. ♦ 

 




