
So, you’ve decided to plunge into the world of artificial intelligence (AI) in 
order to make your systems smarter. A natural, but not entirely obvious, first 
question to ask is whether or not your newly-AI-enabled systems will operate 
fast enough to keep up with incoming data. You can find benchmark data 
to assess performance of the selected neural-net (NN) in isolation, but 
that will only give you a part of the answer. That approach may leave you 
disappointed to find that your system runs slower and less efficiently than those 
benchmarks suggested it would. Why would that be?

The issue is that NN benchmarks do not tell the whole story. It is not uncommon 
that the neural net is not the rate-limiting component in a data-processing pipeline. If that’s true, then the extra 
cost or energy burned by specifying an unnecessarily faster neural net is wasted. For example, a vision neural 
net may have a full pipeline that operates at one tenth the speed of the neural net alone. Consideration of the 
entire pipeline at the onset prevents learning this painful lesson the hard way.

Application Pipelines
Neural nets form one part of a processing pipeline. The job of the neural net may be to classify objects in 
an image, recognize speech or otherwise generate information that will lead to a decision. The inputs to a 
network will generally be an image, a video, or a soundstream, and that input will typically originate in a sensor 
like a camera or a microphone. In most implementations, though, raw sensor output is not usually suitable for 
direct use by the neural net.

 • The original signal may be noisy.

 • Aspects of the original signal may need to be enhanced to make neural-net processing more effective.

 • Even with a clean signal, additional processing may be needed – like determining the difference between 
two successive video frames rather than using the frames themselves.

The full application pipeline contains all of these pre-processing functions as well as the neural net. The pre-
processing may very well be the slowest part of the pipeline.

Image Processing as an Example
A typical image processing pipeline uses an image sensor processor (ISP) to convert the raw image into a YUV 
representation, and then uses a GPU to convert that into RGB. The AI accelerator can then operate on the RGB 
data, delivering a decision to the CPU for action and a final image to the GPU for display. 

This pipeline is typically managed by the CPU. Because it uses multiple components, it is unlikely that a CPU will 
dispatch a task to the start of the pipeline and get the final result when finished. Instead, the CPU will dispatch 
tasks to each component in turn, arranging the data movements as needed.
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In this pipeline, performance is affected by the following considerations:

 • How fast are the individual components? This is where the usual benchmarking occurs, but it’s but one 
consideration.

 • How much is performance slowed by the need to move data around for each component?

 • How much does CPU management slow the pipeline down?
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Platform Choices
The performance of a particular neural net will depend partly on the structure of the network itself. But 
the fundamental processing capabilities are determined by the choice of the underlying processing 
unit. The primary computing operation used is the multiply-accumulate, or MAC, function, which can be 
implemented in different ways with different processing rates. A big tradeoff must be made against flexibility or 
programmability, which, according to conventional wisdom, comes at the expense of speed.

 • CPUs and DSPs are fully software programmable. But because one, or at most a few, units must do the 
millions of calculations, overall performance will be slow.

 • Graphics processors (GPUs) can be programmed to do one task over and over very quickly.

 • Field-programmable gate arrays (FPGAs) are fully hardware and software programmable. They can 
implement multiple functions concurrently. Their programmability makes them very useful for exploring 
hardware acceleration of new complex functionality, but the result will not be optimized. In addition, each 
application will need a custom software stack and a lengthy development time due to the hardware-
based programmability they support.

 • Graph processors and hybrid processors offer varying degrees of programmability, with results that are 
better optimized. In addition, a single software stack can serve all applications. Blaize® GSP architecture is 
fully software programmable, offering maximum flexibility and speed of development and deployment.

 • Fixed-function devices are not programmable, but they can achieve the highest performance. At this 
stage of neural net evolution, fixed-function devices make sense only for well-understood applications that 
will be used in very high volumes, as they cannot be modified easily once deployed.
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So which one of these is best? It’s easy to turn to the NN benchmarks 
alone to make that determination. You will generally want to use the 
most flexible implementation that can meet the speed, power, and cost 
requirements of the application. But if that speed is dominated by blocks 
other than the neural net, then the NN benchmarks are not helpful on 
their own.

ResNet is an oft-used vision neural network, and performance typically 
lands in the range of hundreds of images per second when using 
Graph processors or GPUs. But a pipeline such as the one above can 
typically operate at around 50 frames per second (fps). That is an order 
of magnitude slower than the pipeline as a whole can run, making 
attempts to optimize neural net speed alone an academic exercise.

In addition, programmability can allow various components to be 
collapsed into a single unit. The GSP, for example, can do far more than 
just hosting the neural network. Other functions in the pipeline can be 
included, saving time moving data and requiring less management by 
the CPU. In the ideal case, the entire pipeline goes into a single device, 
and the CPU has but one dispatching task, receiving the final result with 
no further intervention. This can dramatically improve performance.

Look at the Whole Pipeline
As a result, looking only at the neural-net speed will set unrealistic 
expectations for the final performance of the subsystem. Unfortunately, 
however, there is no single universal benchmark that can be applied to 
all applications. Each application has too many variables, and there are 
far too many applications to be captured by a single benchmark.

So what’s the best way to proceed? Questions to ask in addition to the 
component benchmarks are,

 • How will data be moved between components? How will that affect 
performance?

 • How much CPU intervention will there be? How will that affect 
performance?

 • Are there ways to merge functions into a single programmable unit? 
How much will that increase performance?

The best way to get good answers to these questions is to work with the 
suppliers providing the hardware platforms under evaluation to gain 
insight into the implementation and optimization of applications on the 
platforms. This will take more time than a simple benchmarking review, 
but it is the only way to pick the best neural-net implementation for your 
specific processing pipeline.

BENCHMARKS, BENCHMARKS, 
AND BENCHMARKS
With neural nets, as with most electronic 
subsystems that perform calculations, 
benchmarks help establish how well a 
particular NN does at a particular job. 
But NNs are relatively new, so, while 
benchmarks exist, many more are in 
development, and it is a dynamic scene 
— making it potentially difficult to pick 
the right benchmarks.

That task is made more difficult by the 
fact that there are at least three different 
types of benchmarks that tell different 
stories.

 • There are benchmarks for measuring 
the processing speed of a specific 
network. This is critical for streaming 
applications like video and 
natural-language processing. It 
is also useful, from a productivity 
standpoint, for static tasks like 
image recognition or handwriting 
analysis. Units of such a benchmark 
will establish some level of work 
accomplished per unit time, like 
frames per second for video.

 • There are benchmarks for measuring 
the quality of a specific model 
on a specific network. These 
benchmarks consist of pools of 
samples — video clips, photos, 
samples of handwriting — and, by 
using a recognized collection, you 
can establish an accuracy rating 
that can be compared against 
alternatives. These ratings specify 
what percentage of the samples 
were correctly recognized — or, 
conversely, the error rate.

 • There are benchmarks for measuring 
how long it takes to train a specific 
network. Some benchmarks focus 
on the turn-around time of a single 
training batch, others measure the 
total time over all batches used to 
reach a specified accuracy level.

Most benchmarks are downloadable for 
free from sites like Github.
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