
So, you’ve decided to plunge into the world of artificial intelligence (AI) in
order to make your systems smarter. A natural, but not entirely obvious, first
question to ask is whether or not your newly-AI-enabled systems will operate
fast enough to keep up with incoming data. You can find benchmark data
to assess performance of the selected neural-net (NN) in isolation, but
that will only give you a part of the answer. That approach may leave you
disappointed to find that your system runs slower and less efficiently than those
benchmarks suggested it would. Why would that be?

The issue is that NN benchmarks do not tell the whole story. It is not uncommon
that the neural net is not the rate-limiting component in a data-processing pipeline. If that’s true, then the extra
cost or energy burned by specifying an unnecessarily faster neural net is wasted. For example, a vision neural
net may have a full pipeline that operates at one tenth the speed of the neural net alone. Consideration of the
entire pipeline at the onset prevents learning this painful lesson the hard way.

Application Pipelines
Neural nets form one part of a processing pipeline. The job of the neural net may be to classify objects in
an image, recognize speech or otherwise generate information that will lead to a decision. The inputs to a
network will generally be an image, a video, or a soundstream, and that input will typically originate in a sensor
like a camera or a microphone. In most implementations, though, raw sensor output is not usually suitable for
direct use by the neural net.

 • The original signal may be noisy.

 • Aspects of the original signal may need to be enhanced to make neural-net processing more effective.

 • Even with a clean signal, additional processing may be needed – like determining the difference between
two successive video frames rather than using the frames themselves.

The full application pipeline contains all of these pre-processing functions as well as the neural net. The pre-
processing may very well be the slowest part of the pipeline.

Image Processing as an Example
A typical image processing pipeline uses an image sensor processor (ISP) to convert the raw image into a YUV
representation, and then uses a GPU to convert that into RGB. The AI accelerator can then operate on the RGB
data, delivering a decision to the CPU for action and a final image to the GPU for display.

This pipeline is typically managed by the CPU. Because it uses multiple components, it is unlikely that a CPU will
dispatch a task to the start of the pipeline and get the final result when finished. Instead, the CPU will dispatch
tasks to each component in turn, arranging the data movements as needed.

Neural Network Benchmarking:
See the Forest for the Trees

1

WHITE PAPER

When evaluating a

neural net, consider

the entire pipeline to

get a realistic picture

of performance

Blaize® Neural Network Benchmarking

Lense Correction

Crop and Scale

Pixel Correction

Black Point

White Balance

Demosaic

Control

YUV

Raw

ISP

CPU

Histogram

Contrast

Converter

Filtering

Monitor

RGB

YUV
GPU

Convolution

Pooling

Decisions

Max Connected

Out

Actions

RGB
Acc

Overlay

Display

Audit

Display

Out
GPU

In this pipeline, performance is affected by the following considerations:

 • How fast are the individual components? This is where the usual benchmarking occurs, but it’s but one
consideration.

 • How much is performance slowed by the need to move data around for each component?

 • How much does CPU management slow the pipeline down?

2Blaize® Neural Network Benchmarking

Platform Choices
The performance of a particular neural net will depend partly on the structure of the network itself. But
the fundamental processing capabilities are determined by the choice of the underlying processing
unit. The primary computing operation used is the multiply-accumulate, or MAC, function, which can be
implemented in different ways with different processing rates. A big tradeoff must be made against flexibility or
programmability, which, according to conventional wisdom, comes at the expense of speed.

 • CPUs and DSPs are fully software programmable. But because one, or at most a few, units must do the
millions of calculations, overall performance will be slow.

 • Graphics processors (GPUs) can be programmed to do one task over and over very quickly.

 • Field-programmable gate arrays (FPGAs) are fully hardware and software programmable. They can
implement multiple functions concurrently. Their programmability makes them very useful for exploring
hardware acceleration of new complex functionality, but the result will not be optimized. In addition, each
application will need a custom software stack and a lengthy development time due to the hardware-
based programmability they support.

 • Graph processors and hybrid processors offer varying degrees of programmability, with results that are
better optimized. In addition, a single software stack can serve all applications. Blaize® GSP architecture is
fully software programmable, offering maximum flexibility and speed of development and deployment.

 • Fixed-function devices are not programmable, but they can achieve the highest performance. At this
stage of neural net evolution, fixed-function devices make sense only for well-understood applications that
will be used in very high volumes, as they cannot be modified easily once deployed.

CPU GPU FPGA
Fixed

Function
Blaize
Hybrid

Any task
Unoptimized

100% Programmability

One task
Many times

Pervasive Programmability
(Brute force ecosystem)

Multiple tasks
Exploration

Custom Programmability
(Each App a new stack)

Multiple tasks
Optimized

Good Programmability
(Single SW stack)

A fixed task
Many times

Limited
Programmability

3Blaize® Neural Network Benchmarking

So which one of these is best? It’s easy to turn to the NN benchmarks
alone to make that determination. You will generally want to use the
most flexible implementation that can meet the speed, power, and cost
requirements of the application. But if that speed is dominated by blocks
other than the neural net, then the NN benchmarks are not helpful on
their own.

ResNet is an oft-used vision neural network, and performance typically
lands in the range of hundreds of images per second when using
Graph processors or GPUs. But a pipeline such as the one above can
typically operate at around 50 frames per second (fps). That is an order
of magnitude slower than the pipeline as a whole can run, making
attempts to optimize neural net speed alone an academic exercise.

In addition, programmability can allow various components to be
collapsed into a single unit. The GSP, for example, can do far more than
just hosting the neural network. Other functions in the pipeline can be
included, saving time moving data and requiring less management by
the CPU. In the ideal case, the entire pipeline goes into a single device,
and the CPU has but one dispatching task, receiving the final result with
no further intervention. This can dramatically improve performance.

Look at the Whole Pipeline
As a result, looking only at the neural-net speed will set unrealistic
expectations for the final performance of the subsystem. Unfortunately,
however, there is no single universal benchmark that can be applied to
all applications. Each application has too many variables, and there are
far too many applications to be captured by a single benchmark.

So what’s the best way to proceed? Questions to ask in addition to the
component benchmarks are,

 • How will data be moved between components? How will that affect
performance?

 • How much CPU intervention will there be? How will that affect
performance?

 • Are there ways to merge functions into a single programmable unit?
How much will that increase performance?

The best way to get good answers to these questions is to work with the
suppliers providing the hardware platforms under evaluation to gain
insight into the implementation and optimization of applications on the
platforms. This will take more time than a simple benchmarking review,
but it is the only way to pick the best neural-net implementation for your
specific processing pipeline.

BENCHMARKS, BENCHMARKS,
AND BENCHMARKS
With neural nets, as with most electronic
subsystems that perform calculations,
benchmarks help establish how well a
particular NN does at a particular job.
But NNs are relatively new, so, while
benchmarks exist, many more are in
development, and it is a dynamic scene
— making it potentially difficult to pick
the right benchmarks.

That task is made more difficult by the
fact that there are at least three different
types of benchmarks that tell different
stories.

 • There are benchmarks for measuring
the processing speed of a specific
network. This is critical for streaming
applications like video and
natural-language processing. It
is also useful, from a productivity
standpoint, for static tasks like
image recognition or handwriting
analysis. Units of such a benchmark
will establish some level of work
accomplished per unit time, like
frames per second for video.

 • There are benchmarks for measuring
the quality of a specific model
on a specific network. These
benchmarks consist of pools of
samples — video clips, photos,
samples of handwriting — and, by
using a recognized collection, you
can establish an accuracy rating
that can be compared against
alternatives. These ratings specify
what percentage of the samples
were correctly recognized — or,
conversely, the error rate.

 • There are benchmarks for measuring
how long it takes to train a specific
network. Some benchmarks focus
on the turn-around time of a single
training batch, others measure the
total time over all batches used to
reach a specified accuracy level.

Most benchmarks are downloadable for
free from sites like Github.

4659 Golden Foothill Parkway, Suite 206, El Dorado Hills, CA 95762 USA
www.blaize.com | info@blaize.com

Blaize, the Blaize logo, GSP, and other designated brands included herein are trademarks or registered trademarks of Blaize, Inc. in the United States and
other countries. All other brand and product names are trademarks or service marks of their respective owners. © 2024 Blaize, Inc. All Rights Reserved.

MWP00069
v1.0, Jan 2024

